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SUMMARY

The Y Z� shock-capturing technique was introduced recently for use in combination with the streamline-
upwind/Petrov–Galerkin formulation of compressible flows in conservation variables. The Y Z� shock-
capturing parameter is much simpler than an earlier parameter derived from the entropy variables for
use in conservation variables. In this paper, we propose to use the Y Z� shock-capturing in combination
with the variable subgrid scale (V-SGS) formulation of compressible flows in conservation variables.
The V-SGS method is based on an approximation of the class of SGS models derived from the Hughes
variational multiscale method. We evaluate the performance of the V-SGS and Y Z� combination in a
number of standard, 2D test problems. Compared to the earlier shock-capturing parameter derived from
the entropy variables, in addition to being much simpler, the Y Z� shock-capturing parameter yields better
shock quality in these test problems. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The streamline-upwind/Petrov–Galerkin (SUPG) formulation of compressible flows is one of
the earliest stabilized finite element formulations. It was first introduced in 1982, soon after the
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introduction of the SUPG formulation of incompressible flows [1, 2]. This first SUPG formulation
of compressible flows was in the context of conservation variables, and was described in detail in
a NASA technical report [3]. A concise version of the NASA report was published as an AIAA
paper [4], and a more thorough version with additional examples as a journal paper [5]. That SUPG
formulation did not involve any shock-capturing term. It was later recast in entropy variables and
supplemented with a shock-capturing term [6]. In a 1991 ASME paper [7], the SUPG formulation
introduced in [3–5] was supplemented with a very similar shock-capturing term, which included
a shock-capturing parameter that is now called ‘�91’. This shock-capturing parameter was derived
from the one given in [6] for the entropy variables. With the test computations reported in [7, 8],
it was shown that with this shock-capturing term, the SUPG formulation introduced in [3–5] is
very comparable in accuracy to the one that was recast in entropy variables.

Newways of calculating the shock-capturing parameters to be used with the SUPG formulation of
compressible flows in conservation variables were introduced in [9, 10]. The new shock-capturing
parameters, which we now categorize as ‘Y Z� shock-capturing’, are simpler and less costly
to compute with than �91. They are based on scaled residuals and are defined with options
for smoother or sharper shocks. A preliminary set of test computations with these new shock-
capturing parameters were reported in [11] for inviscid supersonic flows. Those computations were
limited to very simple 2D geometries and quadrilateral elements. A more comprehensive set of
2D test computations for inviscid supersonic flows were reported in [12]. Those tests with the
Y Z� shock-capturing involved different element types and mesh orientations. In [13], numerical
experiments were carried out for inviscid supersonic flows around cylinders and spheres to evaluate
the performance of the Y Z� shock-capturing in more challenging test problems. In those numerical
experiments, in addition to comparing the Y Z� results to those obtained with �91, for 2D structured
meshes, the Y Z� results were compared to the results obtained with the OVERFLOW code [14].

The variable subgrid scale (V-SGS) method was first introduced in [15] for the advection–
diffusion–reaction equation and for incompressible flows. The V-SGS method is based on an
approximation of the class of SGS models derived from the Hughes variational multiscale (Hughes-
VMS) method [16]. In [17], the V-SGS approach was formulated for compressible flows in
conservation variables.

In this paper, we propose a method where the Y Z� shock-capturing is used in combination
with the V-SGS formulation of compressible flows in conservation variables. We evaluate the
performance of the V-SGS and Y Z� combination in a number of standard, 2D test problems. In
Section 2, we review the governing equations of compressible flows in conservation variables.
The SUPG and V-SGS formulations are described in Section 3, and the Y Z� shock-capturing in
Section 4. The test computations are presented in Section 5, and the concluding remarks are given
in Section 6.

2. NAVIER–STOKES EQUATIONS OF COMPRESSIBLE FLOWS

Let �⊂ Rnsd be the spatial domain with boundary �, and (0, T ) be the time domain. The symbols
�, u, p and e will represent the density, velocity, pressure and the total energy, respectively.

The Navier–Stokes equations of compressible flows can be written on � and ∀t ∈ (0, T ) as

�U
�t

+ �Fi

�xi
− �Ei

�xi
− R= 0 (1)
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where U= (�, �u1, �u2, �u3, �e)T is the vector of conservation variables, and Fi and Ei are,
respectively, the Euler and viscous flux vectors

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ui�

ui�u1 + �i1 p

ui�u2 + �i2 p

ui�u3 + �i3 p

ui (�e + p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

Ti1

Ti2

Ti3

−qi + Tikuk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)

Here �i j are the components of the identity tensor I, qi are the components of the heat flux vector,
and Ti j are the components of the Newtonian viscous stress tensor

T= �(∇ · u)I + 2�e(u) (3)

where � and � (= ��) are the viscosity coefficients, � is the kinematic viscosity, and e(u) is the
strain-rate tensor

e(u) = 1
2 ((∇u) + (∇u)T) (4)

It is assumed that � =−2�/3. The equation of state used here corresponds to the ideal gas
assumption. The term R represents all other components that might enter the equations, including
the external forces.

Equation (1) can further be written in the following form:

�U
�t

+ Ai
�U
�xi

− �
�xi

(
Ki j

�U
�x j

)
− R= 0 (5)

where

Ai = �Fi

�U
, Ki j

�U
�x j

=Ei (6)

Appropriate sets of boundary and initial conditions are assumed to accompany Equation (5).

3. SUPG AND V-SGS STABILIZATIONS

In describing the SUPG and V-SGS formulations of Equation (5), we assume that we have
constructed some suitably defined finite-dimensional trial solution and test function spaces Sh

U
and Vh

U. Based on that, the SUPG [4, 5, 7] and V-SGS [17] formulations can be written as follows:
find Uh ∈Sh

U such that ∀Wh ∈Vh
U∫

�
Wh ·

(
�Uh

�t
+ Ah

i
�Uh

�xi

)
d� +

∫
�

(
�Wh

�xi

)
·
(
Kh

i j
�Uh

�x j

)
d�

−
∫

�H

Wh · Hh d� −
∫

�
Wh · Rh d�

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:695–706
DOI: 10.1002/fld



698 F. RISPOLI ET AL.

+
nel∑
e=1

∫
�e

PSTAB(Wh) ·
[
�Uh

�t
+ Ah

i
�Uh

�xi
− �

�xi

(
Kh

i j
�Uh

�x j

)
− Rh

]
d�

+
nel∑
e=1

∫
�e

�SHOC

(
�Wh

�xi

)
·
(

�Uh

�xi

)
d�= 0 (7)

where Hh represents the natural boundary conditions associated with Equation (5), and �H is the
part of the boundary where such boundary conditions are specified. The vector operator PSTAB(Wh)

takes the following forms for the SUPG and V-SGS stabilizations, respectively

PSTAB(Wh) =PSUPG(Wh) (8)

PSTAB(Wh) =PVSGS(Wh) (9)

where

PSUPG(Wh) =
[
sSUPG

(
�Wh

�xk

)]
Ah
k (10)

PVSGS(Wh) =
[
(Ah

k )
T
(

�Wh

�xk

)
+ �

�xl

(
(Kh

lk)
T
(

�Wh

�xk

))]
sVSGS (11)

The diagonal matrices sSUPG and sVSGS are the SUPG and V-SGS stabilization parameters. The
expressions for these matrices can be found in [9–13] for the SUPG stabilization and in [17] for
the V-SGS stabilization. The shock-capturing parameter is denoted by �SHOC. It was discussed
briefly in Section 1 and will further be discussed in Section 4.

4. Y Z� SHOCK-CAPTURING

In the ‘YZ’ version of the Y Z� shock-capturing, �SHOC is defined as

�SHOC =‖Y−1Z‖
(

nsd∑
i=1

∥∥∥∥Y−1 �Uh

�xi

∥∥∥∥2
)�/2−1 (

hSHOC
2

)�

(12)

Here Y is a diagonal scaling matrix constructed from the reference values of the components of U

Y=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(U1)ref 0 0 0 0

0 (U2)ref 0 0 0

0 0 (U3)ref 0 0

0 0 0 (U4)ref 0

0 0 0 0 (U5)ref

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Z=Ah
i
�Uh

�xi
(14)
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and

hSHOC = hJGN (15)

where

hJGN = 2

( nen∑
a=1

|j · ∇Na|
)−1

(16)

j= ∇�h

‖∇�h‖ (17)

The parameter � is set as �= 1 for smoother shocks and � = 2 for sharper shocks.
In the ‘YZU’ version of the Y Z� shock-capturing, �SHOC is defined as

�SHOC =‖Y−1Z‖
(

nsd∑
i=1

∥∥∥∥Y−1 �Uh

�xi

∥∥∥∥2
)�/2−1

‖Y−1Uh‖1−�
(
hSHOC

2

)�

(18)

In the ‘YZ12’ and ‘YZU12’ versions, �SHOC is defined, based on the expressions given by
Equations (12) and (18), by an averaging between the � = 1 and � = 2 selections

�SHOC = 1
2 ((�SHOC)�=1 + (�SHOC)�=2) (19)

Remark 1
When the expressions given by Equations (12) and (18) were originally introduced in [9, 10],
the intent was to have Z represent the residual and thus make �SHOC residual-based. This point
was made explicitly in [12, 13] by stating that the Y Z� shock-capturing parameters were ‘based
on scaled residuals’. This was the motivation behind the term ‖Y−1Z‖ in those two expressions.
The selections given in [9, 10] for Z represent the steady-state and time-dependent versions of the
residual for inviscid flows with no source or external-force terms. The terms with the exponents
�/2 − 1 and � generate the correct local length scale. When � = 1, from both expressions we
obtain a definition for �SHOC that has reduced sensitivity to how the scaling matrix Y is selected.

But when �= 2, it is with the term ‖Y−1Uh‖1−�
in Equation (18) that the definition still has a

reduced sensitivity to how Y is selected.

5. TEST COMPUTATIONS WITH STANDARD 2D TEST PROBLEMS

The test computations were carried out by using the V-SGS stabilization in combination with the
YZ12 and YZU12 versions of the Y Z� shock-capturing and with the shock-capturing parameter
introduced in [17], which is based on the �91 parameter and the sVSGS matrix in terms of con-
servation variables that is now called �91–MOD. These three options are denoted, respectively, by
‘VYZ12’, ‘VYZU12’ and ‘V91’. For the purpose of comparison, computations were carried out
also by using the SUPG stabilization in combination with the YZ12 version, and that option is
denoted by ‘SYZ12’.

For completeness, we provide here the expression for the shock-capturing parameter proposed
in [17]:

�SHOC = �91−MOD = max(0, �91 − ��) (20)
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where

�91 =
∥∥∥∥Ah

k
�Uh

�xk

∥∥∥∥
Ã−1
0

/⎛⎝ nsd∑
j=1

∥∥∥∥∥�� j

�xk

�Uh

�xk

∥∥∥∥∥
2

Ã−1
0

⎞⎠1/2

(21)

�� =
∥∥∥∥Ak

�Uh

�xk

∥∥∥∥
Ã−1
0 sVSGS

/∥∥∥∥�Uh

�xk

∥∥∥∥
Ã−1
0

(22)

where � j ’s are the element coordinates, and Ã0 is the Jacobian of the transformation from the
entropy variables to the conservation variables.

We compute three well-known, steady-state test problems: ‘oblique shock’, ‘reflected shock’
and ‘parabolic bump’. These were used in many earlier publications, and here we compute them
with meshes made of quadrilateral elements. In all three test computations, for the calculation of
the scaling matrix Y given by Equation (13), we set the reference values of the components of U
to 1.0 in computational units.

Oblique shock. Figure 1 shows the problem description. This is a Mach 2 uniform flow over
a wedge at an angle of −10◦ with the horizontal wall. The solution involves an oblique shock
at an angle of 29.3◦ emanating from the leading edge. The computational domain is a square
with 0�x�1 and 0�y�1. The inflow conditions are given as M = 2.0, � = 1.0, u1 = cos 10◦,
u2 = − sin 10◦ and p= 0.179. This results in an exact solution with the following outflow data:
M = 1.64, �= 1.46, u1 = 0.887, u2 = 0.0 and p= 0.305. All essential boundary conditions are
imposed at the left and top boundaries, slip condition at the wall and no boundary conditions at the
right boundary. The mesh is essentially uniform and consists of 20× 20 elements. Figure 2 shows
the density along x = 0.9, obtained with VYZ12, V91 and SYZ12. The solutions obtained with
VYZ12 and SYZ12, which are indistinguishable from each other, clearly exhibit less dissipation
than the solution obtained with V91. Figure 3 shows the solutions obtained with VYZ12 and
VYZU12, which are indistinguishable from each other. The new shock-capturing parameters, in

line plots

M = 1.64

x

y

Shock

10˚

M = 2.0

29.3˚

Figure 1. Oblique shock. Problem description.
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Figure 2. Oblique shock. Density along x = 0.9, obtained with VYZ12 (V-SGS and YZ12 combination),
V91 (V-SGS and �91–MOD combination) and SYZ12 (SUPG and YZ12 combination).
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Figure 3. Oblique shock. Density along x = 0.9, obtained with VYZ12 (V-SGS and YZ12 combination)
and VYZU12 (V-SGS and YZU12 combination).
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addition to being much simpler compared to �91–MOD, in computation of this test problem with
the V-SGS stabilization they yield better shock quality than �91–MOD does. This observation is
essentially the same as the one reported in [11, 12] for computation of this test problem with the
SUPG stabilization.

Reflected shock. Figure 4 shows the problem description. This problem consists of three flow
regions (R1, R2 and R3) separated by an oblique shock and its reflection from the wall. The
computational domain is a rectangle with 0�x�4.1 and 0�y�1. The inflow conditions in R1
are given as M = 2.9, �= 1.0, u1 = 2.9, u2 = 0.0 and p= 0.7143. Specifying these conditions
and requiring the incident shock to be at an angle of 29◦ results in an exact solution with
the following flow data: R2: M = 2.378, � = 1.7, u1 = 2.619, u2 = −0.506 and p= 1.528; R3:
M = 1.942, �= 2.687, u1 = 2.401, u2 = 0.0 and p= 2.934. All essential boundary conditions are
imposed at the left and top boundaries, slip condition at the wall, and no boundary conditions at the

x

y

29˚

23˚

M = 2.378

M = 2.9
Shock

M = 1.942

1

2

3

line plots

Figure 4. Reflected shock. Problem description.
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Figure 5. Reflected shock. Density along y = 0.25, obtained with VYZ12 (V-SGS and YZ12 combination),
V91 (V-SGS and �91–MOD combination) and SYZ12 (SUPG and YZ12 combination).
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right boundary. The mesh is uniform and consists of 60× 20 elements. Figure 5 shows the density
along y = 0.25, obtained with VYZ12, V91 and SYZ12. The solutions obtained with VYZ12
and SYZ12, which are indistinguishable from each other, exhibit somewhat more dissipation
than the solution obtained with V91. Figure 6 shows the solutions obtained with VYZ12 and
VYZU12. In this case, the solution obtained with VYZU12 exhibits significantly less dissipation
than the solution obtained with VYZ12. When we compare Figures 5 and 6, we conclude that
the solution obtained with VYZU12 exhibits less dissipation than the solution obtained with V91.
Also in this test problem, in computations with the V-SGS stabilization, the new, much simpler
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Figure 6. Reflected shock. Density along y = 0.25, obtained with VYZ12 (V-SGS and YZ12 combination)
and VYZU12 (V-SGS and YZU12 combination).
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Figure 7. Parabolic bump. Problem geometry and mesh.
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Figure 8. Parabolic bump. Density along y = 0.5, obtained with VYZ12 (V-SGS and YZ12 combination),
V91 (V-SGS and �91–MOD combination) and SYZ12 (SUPG and YZ12 combination).
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and VYZU12 (V-SGS and YZU12 combination).
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shock-capturing parameters yield better shock quality than �91–MOD does. This is also essentially the
same observation that was reported in [11, 12] for computation of this test problem with the SUPG
stabilization.

Parabolic bump. Figure 7 shows the problem geometry and the mesh. The parabolic bump is
symmetric, has a height of 0.05, starts at x = −0.5, and ends at x = 0.5. The inflow conditions (at
the left boundary) and the conditions at the top boundary are given as M = 1.4, � = 1.0, u1 = 1.0,
u2 = 0.0 and p= 0.364. Slip condition is imposed at the lower boundary and no boundary conditions
at the right boundary. The mesh is almost uniform and consists of 184× 60 elements. In the
x-direction, there are 64 elements along the parabolic bump 60 elements before the bump and
60 after the bump. Figure 8 shows the density along y = 0.5, obtained with VYZ12, V91 and
SYZ12. The solutions obtained with VYZ12 and SYZ12, which are indistinguishable from each
other, exhibit slightly less dissipation than the solution obtained with V91. Figure 9 shows the
solutions obtained with VYZ12 and VYZU12, which are essentially indistinguishable from each
other.

6. CONCLUDING REMARKS

We described a finite element formulation of compressible flows in conservation variables, where
the Y Z� shock-capturing technique is used in combination with the variable subgrid scale
(V-SGS) method. The shock-capturing term provides additional stabilization near the shocks.
How we define the shock-capturing parameter embedded in that term significantly influences the
quality of the solution near the shocks. The Y Z� shock-capturing technique was introduced re-
cently for use in combination with the streamline-upwind/Petrov–Galerkin (SUPG) formulation
of compressible flows in conservation variables. It is simpler and less costly to compute with than
the shock-capturing parameter �91, which was derived in 1991 from a shock-capturing parameter
given for the entropy variables. The V-SGS method is based on an approximation of the class
of SGS models derived from the Hughes variational multiscale (Hughes-VMS) method. We used
three standard, 2D test problems to evaluate the performance of the V-SGS and Y Z� combina-
tion in computation of supersonic flows: ‘oblique shock’, ‘reflected shock’ and ‘parabolic bump’.
Compared to �91–MOD, in addition to being much simpler, the Y Z� shock-capturing parameter
yielded better shock quality in these test problems.
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